Joint modeling of event time and nonignorable missing longitudinal data.

نویسندگان

  • Jean-François Dupuy
  • Mounir Mesbah
چکیده

Survival studies usually collect on each participant, both duration until some terminal event and repeated measures of a time-dependent covariate. Such a covariate is referred to as an internal time-dependent covariate. Usually, some subjects drop out of the study before occurrence of the terminal event of interest. One may then wish to evaluate the relationship between time to dropout and the internal covariate. The Cox model is a standard framework for that purpose. Here, we address this problem in situations where the value of the covariate at dropout is unobserved. We suggest a joint model which combines a first-order Markov model for the longitudinally measured covariate with a time-dependent Cox model for the dropout process. We consider maximum likelihood estimation in this model and show how estimation can be carried out via the EM-algorithm. We state that the suggested joint model may have applications in the context of longitudinal data with nonignorable dropout. Indeed, it can be viewed as generalizing Diggle and Kenward's model (1994) to situations where dropout may occur at any point in time and may be censored. Hence we apply both models and compare their results on a data set concerning longitudinal measurements among patients in a cancer clinical trial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint inference for nonlinear mixed-effects models and time to event at the presence of missing data.

In many longitudinal studies, the individual characteristics associated with the repeated measures may be possible covariates of the time to an event of interest, and thus, it is desirable to model the time-to-event process and the longitudinal process jointly. Statistical analyses may be further complicated in such studies with missing data such as informative dropouts. This article considers ...

متن کامل

Bayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data

A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...

متن کامل

کاربرد مدل توأم بقا و داده های طولی در بیماران دیالیز صفاقی

Background and Aim: In many medical studies along with longitudinal data, which are repeatedly measured during a certain time period, survival data are also recorded. In these situations, using models such as, mixed effects models or GEE method for longitudinal data and Cox model for survival data, are not appropriate because some necessary assumptions are not met. Instead, the joint models hav...

متن کامل

A Flexible Bayesian Approach to Monotone Missing Data in Longitudinal Studies with Nonignorable Missingness with Application to an Acute Schizophrenia Clinical Trial.

We develop a Bayesian nonparametric model for a longitudinal response in the presence of nonignorable missing data. Our general approach is to first specify a working model that flexibly models the missingness and full outcome processes jointly. We specify a Dirichlet process mixture of missing at random (MAR) models as a prior on the joint distribution of the working model. This aspect of the ...

متن کامل

مدل‌سازی توام داده‌های بقا و طولی و کاربرد آن در بررسی عوامل موثر بر آسیب حاد کلیوی

Background: In many clinical trials and medical studies, the survival and longitudinal data are collected simultaneously. When these two outcomes are measured from each subject and the survival variable depends on a longitudinal biomarker, using joint modelling of survival and longitudinal outcomes is a proper choice for analyzing the available data. Methods: In this retrospective archiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lifetime data analysis

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 2002